GOSFORD HIGH SCHOOL

2013 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics

General Instructions

- o Reading Time 5 minutes
- Working Time 3 hours
- Write using a blue or black pen. Black pen is preferred
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-16

Total marks (100)

Section I

Total marks (10)

- o Attempt Questions 1-10
- o Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II

Total marks (90)

- o Attempt questions 11 16
- Answer in the answer booklets provided, unless otherwise instructed
- Start a new booklet for each question
- o All necessary working should be shown for every question
- o Allow about 2 hours 45 minutes for this section

SECTION I

- 10 Marks
- **Attempt Questions 1-10**
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided

Question 1.

5.09674 correct to 3 significant figures is:

- (A) 5.09
- 5.10 **(B)**
- **(C)** 5.096
- **(D)** 5.097

Question 2.

Which of the following is equivalent to $\frac{1}{\sqrt{7} + 2\sqrt{3}}$?

(A) $7 - 2\sqrt{3}$

(B) $7 + 2\sqrt{3}$

(C) $\frac{\sqrt{7}-2\sqrt{3}}{5}$

(D) $\frac{\sqrt{7} + 2\sqrt{3}}{-5}$

Question 3.

$$\frac{x^2 - 5xy}{x^2 - 25y^2}$$
 simplifies to:

(A)
$$\frac{x}{x-5y}$$

$$(\mathbf{B}) \qquad \frac{x}{x+5y}$$

$$(C) \qquad \frac{1-x}{1-5y}$$

$$\mathbf{(D)} \qquad \frac{x - 5y}{x + 25y}$$

Question 4.

Two regular dice are thrown. What is the probability that the throw will not result in a double?

- (A) $\frac{1}{36}$
- (B) $\frac{31}{36}$ (C) $\frac{35}{36}$
- (D)

Question 5.

Convert 84° into radians correct to 2 decimal places.

(A) 2.93 **(B)** 1.46

(C) 1.47 **(D)** 4.81

Question 6.

The graph of the function $y = 3\sin 2x$ has:

- (A) amplitude 3 and period π
- amplitude 2 and period $\frac{2\pi}{3}$ **(B)**
- amplitude 3 and period $\frac{\pi}{2}$ **(C)**
- amplitude $\frac{3}{2}$ and period π **(D)**

Question 7.

What is the equation of the parabola with vertex (4,2) and focus (3,2)?

(A)
$$(x-4)^2 = 4(y-2)$$

(B)
$$(x-4)^2 = -4(y-2)$$

(C)
$$(y-2)^2 = 4(x-4)$$

(C)
$$(y-2)^2 = 4(x-4)$$
 (D) $(y-2)^2 = -4(x-4)$

Question 8.

$$\frac{d}{dx}(\sin 2x) =$$

(A)
$$2\sin 2x$$

(B)
$$2\cos 2x$$

(C)
$$-2\cos 2x$$

(D)
$$\frac{1}{2}\cos 2x$$

Question 9.

It is known that for a particular quadratic equation, $\alpha + \beta = -\frac{5}{3}$ and $\alpha\beta = \frac{7}{3}$. The quadratic equation could be:

(A)
$$6x^2 + 10x + 14 = 0$$

(B)
$$3x^2 - 5x + 7 = 0$$

(C)
$$3x^2 + 5x - 7 = 0$$

(D)
$$5x^2 - 7x + 3 = 0$$

Question 10.

What is the angle of inclination of the line 3x + 2y = 7 with the positive direction of the x axis?

Section II

- 90 Marks
- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section.
- Answer each question in a separate answer booklet.
- All necessary working should be shown for each question.

Question 11.

i)

a) Solve
$$4^x = 32$$

b) Fully factorise $40 - 5y^3$

2
c) Solve $|5 - 2x| \ge 9$

2
d) Find the exact value of $\tan \frac{2\pi}{3}$

1
e) Differentiate \sqrt{x}

1
f) Find the primitive function of $(x-4)^6$

1
g) Find $\frac{d}{dx}x\cos(x+1)$

2
h) State the domain and range of $y = \sqrt{3-x}$

2
i) Calculate the value of $\log_5 16$, correct to 2 decimal places.

Question 12. Start a new booklet.

a) In the diagram, A,B and C are the points (6,0), (9,0) and (12,6) respectively. The equation of the line OC is x-2y=0. AD is parallel to BC and DE is parallel to the x axis.

- i) Show that the equation of the line AD is y = 2x 12.
- ii) Find the coordinates of the point D. 2
- iii) Prove that $\triangle OAD$ is similar to $\triangle DEC$.
- b) A total of 300 tickets are sold in a raffle which has 3 prizes. There are 100 red, 100 green and 100 blue tickets. At the drawing of the raffle, winning tickets are NOT replaced before the next draw.
 - i) What is the probability that each of the 3 winning tickets is red?

1

1

- ii) What is the probability that at least one of the winning tickets is not red?
- iii) What is the probability that there is one winning ticket of each colour?
- c) Find $\int \frac{x}{x^2 + 5} dx$
- d) Evaluate $\int_0^{\frac{\pi}{8}} \sec^2 2x dx$
- e) Evaluate $\int_0^4 \frac{1}{\sqrt{4-x}} dx$ 2

Question 13. Start a new booklet.

- a) A circle with radius 8 cm has an arc PQ 12 cm in length. Find:
 - i) the size of the angle subtended by the arc PQ at the centre of the circle.
 - ii) the length of the chord PQ, correct to 2 decimal places. 2

1

b) A metal tray, in the shape of a rectangular prism with a square base, is made out of 108 square centimetres of sheet metal. The tray is open at the top. Let x cm be the side length of the base and h cm be the height as shown.

- i) Show that $h = \frac{108 x^2}{4x}$
- ii) Show that the volume, V of the tray is given by $V = 27x \frac{x^3}{4}$ 2
- iii) Find the maximum volume of the tray. 3
- c) i) Differentiate $\log_e(\cos x)$ with respect to x. 1
 - ii) Hence, or otherwise, evaluate $\int_0^{\frac{\pi}{4}} \tan x dx$ 2
- d) i) Show that $\cos \theta \tan \theta = \sin \theta$.
 - ii) Hence solve $8 \sin \theta \cos \theta \tan \theta = \csc \theta$ for $0 \le \theta \le 2\pi$ 2

Question 14. Start a new booklet.

a) Solve for x:
$$e^{2x} + 3e^x - 10 = 0$$
.

b) Solve
$$2 \ln x = \ln(5 + 4x)$$
.

- c) A(6, 0) and B(1, -3) are fixed points and P(x, y) moves so that PA is perpendicular to PB. Show that the locus of P is $x^2 + y^2 7x + 3y + 6 = 0$
- d) i) Sketch the graph of $y = 4\cos 2x$ for $-\pi \le x \le \pi$, clearly showing the x and y intercepts.
 - ii) On the same set of axes, sketch the graph of y = |x|. 1
 - iii) Hence state how many solutions there are to the equation $4\cos 2x |x| = 0$, for $-\pi \le x \le \pi$.
- e) The curve y = f(x) has gradient function $f'(x) = 3x^2 k$, where k is a constant.
 - i) Find the value of k if the curve has a stationary point at (-1, 3).
 - ii) Hence find the equation of the curve. 2

Question 15. Start a new booklet.

- a) Consider the function $f(x) = x^4 4x^3$
 - i) Show that $f'(x) = 4x^2(x-3)$
 - ii) Find the coordinates of the stationary points of the curve y = f(x) and determine their nature.
 - iii) Sketch the graph of the curve y = f(x), showing the stationary points 2
 - iv) Find the values of x for which the graph of y = f(x) is concave down.

b)

The part of the curve $\frac{x^2}{2} + y^2 = 8$ that lies in the first quadrant is rotated about the x axis. Find the volume of the solid of revolution.

- c) Under certain climatic conditions the number N of blue-green algae satisfies the equation $N = Ae^{0.15t}$, where t is measured in days and A is a constant.
 - i) Show that the number of algae increases at a rate proportional to the number present.
 - ii) When t = 3 the number of algae was estimated to be 1.7×10^8 . Evaluate A.

1

2

iii) The number of algae doubles every x days. Find x. 2

Question 16. Start a new booklet.

- a) Find the value(s) of k for which the line kx + y + 1 = 0 is a tangent to the parabola $y = x^2$.
- b) i) Use Simpson's Rule with 3 function values to find an approximation to the area under the curve $y = \frac{1}{x}$ between x = a and x = 3a, where a is positive. 2
 - ii) Using the result in part i), show that $\ln 3 \approx \frac{10}{9}$.
- Part of the graph of $y = \log_e(x-2)$ is shown below.

Find the exact value of the area between the curve and the y axis, bounded by the lines y = 0 and $y = \log_e 5$.

3

- ii) Hence find the exact value of the shaded area. 1
- A particle is moving in a straight line. Its displacement, x metres, from the origin, O, at time t seconds, where $t \ge 0$, is given by $x = 1 \frac{7}{t+4}$.
 - i) Find the initial displacement of the particle.
 - ii) Find the velocity of the particle as it passes through the origin.
 - iii) Show that the acceleration of the particle is always negative.
 - iv) Sketch the graph of the displacement of the particle as a function of time. 2

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2} - a^2 \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2} + a^2 \right)$$

NOTE: $\ln x = \log_e x$, x > 0

MATHEMATICS TRIAL HSC 2013

SOLUTIONS

SECTION I

2)
$$\frac{1}{\sqrt{7}+2\sqrt{3}} \times \frac{\sqrt{7}-2\sqrt{3}}{\sqrt{7}-2\sqrt{3}}$$

$$=\frac{\sqrt{7}-2\sqrt{3}}{7-12}$$
 (C)

3)
$$\chi(\chi-5y)$$

 $(\chi-5y)(\chi_45y)$ (B)

5)
$$84\times II = 1.47$$
 (c)

9)
$$\chi^{2} + 5 \chi + 7 = 0$$

 $3\chi^{2} + 5\chi + 7 = 0$ (A)

10)
$$2y = -3x + 7$$

 $y = -\frac{3}{2}x + 7$
 $\tan \Theta = -\frac{3}{2}$
 $\theta = 123^{\circ}41^{\circ}$ (C)

SECTION IL

11) a)
$$4^{x} = 32$$

 $2^{2x} = 2^{5}$
 $2x = 5$
 $x = \frac{5}{2}$

b)
$$40-5y^3=5(8-y^3)$$

= $5(2-y)(4+2y+y^2)$

$$5-2x \geqslant 9$$
 or $5-2x \leq -9$
 $2x \leq -4$ $2x \geqslant 14$
 $x \leq -2$ $x \geqslant 7$

$$d) - \sqrt{3}$$

e)
$$\frac{d}{dx} x^{1/2} = \frac{1}{2} x^{-1/2}$$

$$= \frac{1}{2\sqrt{x}}$$

$$\frac{(x-4)^7}{7} + c$$

$$109516 = \frac{10916}{1095}$$
 $= 1.72$

12) a)
$$M_{BC} = \frac{6}{3}$$

i) = 2 \(\text{1.} M_{AD} = 2\)

$$y-0=2(x-6)$$

 $y=2x-12$

ii)
$$x-2y=0$$
 — ① $y=2x-12$ — ②

$$2-2(2x-12)=0$$

$$2-4x+24=0$$

$$3x=24$$

$$y = 16 - 12$$

LOAD=LADE (alternate L's DE/10B)

b) i)
$$\frac{100}{300} \times \frac{99}{299} \times \frac{98}{298} = \frac{1617}{44551}$$

$$\frac{11) 1 - 1617}{44551} = \frac{42934}{44551}$$

c)
$$\int \frac{\chi}{\chi^2 + 5} d\chi = \frac{1}{2} \int \frac{2\chi}{\chi^2 + 5} d\chi$$

= $\frac{1}{2} \ln(\chi^2 + 5) + C$

d)
$$\int_{0}^{\sqrt{8}} \sec^{2}2x \, dx = \left[\frac{1}{2} + \tan 2x\right]_{0}^{\sqrt{8}}$$
$$= \frac{1}{2} + \tan \frac{\pi}{4} - 0$$
$$= \frac{1}{2}$$

e)
$$\int_{0}^{4} \frac{1}{\sqrt{4-x}} dx$$

$$=\int_{0}^{4} (4-x)^{-1/2} dx$$

$$= \left[-2(4-x)^{1/2}\right]_0^4$$

13) a) i)
$$L= \Gamma \Theta$$

 $12 = 8\Theta$
 $\Theta = \frac{3}{7}$ radians

$$ii) PQ^{2} = 8^{2} + 8^{2} - 2 \times 8 \times 8 \times 60 \times 1.5$$
$$= 128 - 128 \cos 1.5$$
$$= 118.9456382$$

b) i)
$$5A = x^2 + 4xh$$

$$2^{2}+4\chi h = 108$$

$$4\chi h = 108-\chi^{2}$$

$$h = \frac{108-\chi^{2}}{4\chi}$$

ii)
$$V = \chi^2 h$$

$$= \chi^2 \left[\frac{108 - \chi^2}{4 \chi} \right]$$

$$= \frac{108 \chi - \chi^3}{4}$$

$$= 27 \chi - \chi^3$$

iii)
$$\frac{dV}{dx} = 27 - \frac{3x^2}{4} \frac{d^3V}{dx^2} = \frac{-6x}{4}$$

for max $\frac{dV}{dx} = 0$ and $\frac{dV}{dx^2} < 0$

$$27 - 3x^{2} = 0$$

$$3x^{2} = 108$$

$$x^{2} = 36$$

$$x = 16$$

ignore—ve value as measurement when x=6, $\frac{d^2V}{dx^2} < 0$

.1. Max volume when x=6.

$$V= 27(6) - \frac{6^{3}}{4}$$

$$= 162 - \frac{216}{4}$$

$$= 108 \text{ cm}^{3}$$

c)
$$\frac{d}{dx} \log(\cos x) = -\frac{\sin x}{\cos x}$$

= $-\frac{\tan x}{\cos x}$

$$\frac{\pi}{1} \int_{0}^{\pi} \frac{1}{4} \operatorname{d}x \, dx = -\left[\ln(\cos x)\right]_{0}^{\pi/4}$$

$$= \left[\ln(\cos \pi) - \ln(\cos x)\right]$$

$$= -\ln \frac{1}{4} + \ln 1$$

$$= -\ln \frac{1}{2} + \ln 2$$

a) i) LHS =
$$\cos \theta$$
. SIND $\cos \theta$
= SIND = RHS

ii) 8 sin 0 coso tan 0 = cosec 0

$$8 \sin^2 \theta = \frac{1}{\sin \theta}$$

 $8 \sin^3 \theta = 1$
 $\sin^3 \theta = \frac{1}{8}$
 $\sin^3 \theta = \frac{1}{8}$
 $\sin^3 \theta = \frac{1}{8}$

14) a)
$$e^{2x} + 3e^{x} - 10 = 0$$

14) u= e^{x}

$$u^{2} + 3u - 10 = 0$$

$$(u+5)(u-2) = 0$$

$$u = -5, 2$$

$$x=\ln 2$$

b)
$$2 \ln x = \ln(5+4x)$$

$$\chi^{2} - 4\chi - 5 = 0$$

.1,
$$x=5$$
 only soln.

$$M_{PA} = \frac{y}{x-6}$$
 $M_{PB} = \frac{y+3}{x-1}$

$$\frac{y}{x-6} \cdot \frac{y+3}{x-1} = -1$$

$$y^2 + 3y = -x^2 + 7x - 6$$

$$\chi^2 + y^2 - 7x + 3y + 6 = 0$$

e)
$$f'(\alpha) = 3x^2 - k$$

$$3x^{2}-k=0$$

ii)
$$f'(x) = 3x^2 - 3$$

$$f(x) = x^3 - 3x + C$$

when
$$x=-1$$
, $y=3$

$$\therefore f(x) = x^3 - 3x + 1$$

15) a)
$$f(x) = x^4 - 4x^3$$

i)
$$f'(x) = 4x^2 - 12x^2$$

$$=4\pi^2(\pi-3)$$

ii)
$$4\pi^{2}(\pi-3)=0$$

$$\chi=0$$
 $\chi=3$

when
$$x=0$$
, $y=0$

$$x=3$$
, $y=-27$

$$f''(\alpha) = 12x^2 - 24x$$

when $x = 0$, $f''(\alpha) = 0$

.1. possible point of inflexion test for change in concavity

 $\frac{x}{|\alpha|} = \frac{|\alpha|}{|\alpha|} = \frac{|\alpha|}{|\alpha|}$

$$\frac{\chi}{f^{(1)}(\alpha)}$$
 + 0 -

.: paint of infloxion at (0,0)

when
$$x = 3$$
, $f''(x) > 0$

., minum at (3,-27)

iv)
$$12x^{2}-247 < 0$$

olve $12x(x-2) = 0$
 $x=0, 2$

... concave down for 0<2<2

b)
$$\frac{\chi^{2}}{2} + y^{2} = 8$$

 $y^{2} = 8 - \frac{\chi^{2}}{2}$
 $V = \pi \int y^{2} d\chi$

$$= T \int_{0}^{4} 8 - \frac{\chi^{2}}{2} d\chi$$

$$= T \left[8\chi - \frac{\chi^{3}}{6} \right]_{0}^{4}$$

$$= T \left[32 - \frac{64}{6} \right]$$

$$= \frac{64\pi}{3} \text{ cubic units}$$

c) N= Ae 0.15t

i)
$$\frac{dN}{dt} = 0.15Ae^{0.15t}$$

= 0.15N

... proportional to number present

$$ii) 1.7 \times 10^8 = Ae^{0.45}$$

$$A = \frac{1.7 \times 10^8}{e^{0.45}}$$

$$= 1.08 \times 10^8$$

$$\overline{\text{II}}$$
) $N = (1-08 \times 10^8) e^{0.15 \text{t}}$
if doubles every x days
then $2 = e^{0.15 \times 10^8}$

$$1n2 = 0.15x$$

 $x = 4.62 days$

(b) a)
$$kx+y+1=0$$
 — (1) $y=x^2$ — (2)

from ①
$$y = -kx - 1$$

-1. $x^2 = -kx - 1$
 $x^2 + kx + 1 = 0$

eqn has I soln if line is a tangent ie $\Delta = 0$

$$k^2 - 4 = 0$$

 $k = \pm 2$

b) i)
$$A = \frac{a}{3} \left[\frac{1}{a} + \frac{1}{3a} + 4 \cdot \frac{1}{2a} \right]$$

= $\frac{a}{3} \left[\frac{3+1+6}{3a} \right]$

ii)
$$\int_{a}^{3a} \frac{1}{2} dx = \left[\ln x\right]_{a}^{3a}$$
$$= \ln 3a - \ln a$$
$$= \ln 3$$

2) i)
$$y = \ln(x-2)$$

 $x-2 = e^{y}$
 $x = e^{y} + 2$

$$A = \int_{0}^{\ln 5} e^{y} + 2 dy$$

$$= \left[e^{y} + 2y \right]_{0}^{\ln 5}$$

$$= \left(e^{\ln 5} + 2\ln 5 \right) - \left(e^{0} + 0 \right)$$

$$= 5 + 2\ln 5 - 1$$

$$= 5 + 2 \ln 5 - 1$$

= $4 + 2 \ln 5$ sq units

ii)
$$A = 7 \ln 5 - (4 + 2 \ln 5)$$

= $5 \ln 5 - 4 = 5 \text{ units}$

d) i)
$$2 = 1 - \frac{7}{t+4}$$

When
$$t=0$$
, $z=1-\frac{7}{4}$ $=-\frac{3}{4}$

ie 3 m to left of origin

ii)
$$x = 1 - 7(t+4)^{-1}$$

$$\dot{x} = \frac{7}{(t+4)^2}$$

particle passes origin when:

$$0 = 1 - \frac{1}{1 + 4}$$
 $\frac{7}{1 + 4} = 1$
 $7 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$
 $1 = 1 + 4$

$$\vec{n}) \; \vec{n} = -14 \over (t+4)^3$$

since ± 70 , $(\pm 4)^3 > 0$ 1. ji always -Ve

